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Anomaly Detection in the Open Supernova Catalog

Figure 3. Isolation forest structure. Forest consists 
of the independent decision trees. To build a 
branching in a tree a random feature and a random 
splitting are selected. The tree is built until each 
object of a sample is isolated in a separate leaf — 
the shorter path corresponds to a higher anomaly 
score which is also illustrated by the colour. For each 
object, the measure of its normality is a function of 
the depths of the leaves into which it is isolated.

Figure 5. Three-dimensional t-SNE reduced data 
after application of the isolation forest algorithm. Each 
point represents a supernova light curve from the 
data set projected into the three-dimensional space 
with the coordinates (x1, x2, x3). The intensity of the 
colour indicates the anomaly score for each object as 
estimated by the isolation forest algorithm. A darker 
color corresponds to the objects with higher anomaly 
scores.

Figure 4. Distribution of objects by anomaly score in 
10 data sets, C 2 – C 9 denote C data sets with 2–9 
t-SNE dimensions. In each data set objects are 
ordered by score. Black solid and dashed lines 
denote 1% and 2% contamination level of outliers, 
respectively

The next generation of large astronomical surveys will discover millions of transients making available a combined data set of unprecedented 
volume. The use of machine learning (ML) method become essential to process such large data volumes. Moreover, rare or completely new 
transients are expected  and the task of finding them can be framed as an anomaly detection problem. In this analysis we turn to the automatic 
search for anomalies in the real photometric data using the Open Supernova Catalog  (OSC, [1]), which serves as a proof of concept for the 
applicability of these methods to future large scale surveys.

Machine Learning algorithms generally need a homogeneous input data matrix. For 
this purpose, the pre-processing procedure allows to extract features from OSC light 
curves like illustrated by Fig 1. First, we prepared the photometric data extracted from 
the OSC; we transformed the magnitudes to the flux units, converted the upper limits, 
and implemented 1-day time-binning. After that we approximate the light curves with  
Gaussian processes [2]. In general each light curve are approximated by GP 
independently but in this study for each object we used Multivariate Gaussian Process 
approximation that takes into account the correlation between light curves in different 
bands, approximating the data by GP in all filters in a one global fit (for details see 
Kornilov et al. 2019, in prep.). Finally to reduce the e dimensionality of the data we 
applied t-SNE [3], a variation of the stochastic neighbour embedding method [4],

Figure 1. Workflow for the analysis. Ni denotes the number of observations in i’th band. GP photometry includes 
364 features: 121 × 3 normalized fluxes and the LC flux maximum; GP parameters are 9 fitted parameters of the 
Gaussian process kernel and the log-likelihood of the fit.

To find the outliers we use the isolation forest 
algorithm (Liu et al. 2008, 2012) and describe 
Fig 3. We run the isolation forest algorithm on 
10 data sets obtained using the same 
photometric data (Fig. 1):

A. data set of 364 photometric characteristics
B. data set of 10 parameters of the Gaussian 

process
C. 8 data sets obtained by reducing 374 

features to 2–9 t-SNE dimensions

For each data set we obtained a list of 
outliers. The distribution of objects in each of 
10 data sets by anomaly score is presented in 
Fig. 8. An example of the isolation forest 
algorithm applied to the three-dimensional 
reduced data set is shown in Fig. 9.
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Results:
Applying the unsupervised learning to the photometric 
data extracted from the Open Supernova Catalog we 
found ∼100 outliers among a total of 1999 objects (Fig. 
1). However, not all of them are necessary anomalies. 
Among the detected outliers there are few known cases 
of miss-classifications, representatives of rare classes 
of SNe (e.g., superluminous supernovae, 91T-like SNe 
Ia) and highly reddened objects. We also found that 16 
anomalies classified as supernovae in [5], are likely to 
be quasars or stars. Light curves with GP 
approximation for all 1999 objects can be found at 
http://snad.space/osc/ and those who considered 
anomalous according to the criteria described in the 
previous section are listed in Table A1 in [6]. In our list 
of anomalies we found three peculiar SNe Ia (SN 
2002bj, SN 2013cv, SN 2016bln - Fig. 7); two peculiar 
SNe type II (SN 2013ej, SN 2016ija - Fig. 6); two 
superluminous SNe (SN2213-1745, PTF10aagc); and 
two known misclassifications: SN 2006kg which is an 
active galactic nucleus, and binary microlensing event 
Gaia16aye (Fig. 8). 
In summary, the isolation forest analysis identified 81 
potentially interesting objects, from which 27 (33%) 
where confirmed to be non-SN events or 
representatives of the rare SN classes. Found 
anomalies correspond to 1.4% of the original data set of 
∼2000 objects which was identified demanding 
significantly less resources than a manual search would 
entail. Among these objects, we report for the first time 
the 16 star/quasar-like objects misclassified as SNe.
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