Use of machine learning for anomaly detection in large astronomical databases

<u>Konstantin Malanchev^{1,2}, Alina Volnova³,</u> Matwey Kornilov^{1,2}, Maria Pruzhinskaya¹, Emille Ishida⁴, Florian Mondon⁴, Vladimir Korolev^{5,6}

1) Sternberg Astronomical Institute MSU, 2) Higher School of Economics,

3) Space Research Institute (IKI) RAS, 4) Université Clermont Auvergne,

5) Central Aerohydrodynamic Institute, 6) Moscow Institute of Physics and Technology

DAMDID–2019, Kazan, October 17

Astrophysics as a "Big Data" science

Astronomical catalogs can contain huge amount of open access data.

- Second data release of GAIA space observatory: over billion of positions, and proper motions
- First data release of Zwicky Transient Facility (ZTF): over one hundred million light curves of variable objects with at least 100 observations
- Sloan Digital Sky Survey (SDSS): half billion of objects, four millions of galactic spectra, over 150 TB of data
- Future survey of Large Synoptic Survey Telescope (LSST) will collect several PB of data for ten years

We cannot deal with such data volumes without ML

Machine learning in astrophysics Example: Observation scheduling

Johnson, Adorf, Computers Ops Res. Vol. 19, No. 314, pp. 209-240, 1992

Machine learning in astrophysics Example: Observation scheduling

Johnson, Adorf, Computers Ops Res. Vol. 19, No. 314, pp. 209-240, 1992

90.309

22 23 24 25 26

Machine learning in astrophysics Example: Photometry distance estimation

arXiv:1303.7269

Machine learning in astrophysics Example: Photometric classification of Supernovae

Figure 1. Partial schema of a vanilla bidirectional RNN with mean pooling. Layers are indicated in the first left column. Inputs (X_t) are given to the network. Arrows indicate transmission of temporal information. The network extends to the right by the number of $t \in [1, T]$ available inputs.

arXiv:1901.06384

Machine learning for anomaly detection Outliers

Fig. 1. A simple example of anomalies in a two-dimensional data set.

Chandola, et al., ACM Computing Surveys, Vol. 41, No. 3, Article 15, 2009

Machine learning for anomaly detection Isolation Tree

Shallower leaf nodes have higher anomaly scores, whereas, deeper leaf nodes have lower anomaly scores.

arXiv:1708.09441

Machine learning for anomaly detection Isolation Forest

What is anomaly?

Definition of "anomaly" depends on a problem.

In astrophysics it could be:

- Observation or data reduction artifacts
- Misclassified objects, i.e. active galaxy nuclea in supernova catalog
- Rare class of objects, i.e. microquasar in variable star catalog or gamma ray burst in supernova catalog.
- New physics

Unsupervised machine learning selects outliers, expert analysis of outliers provides anomalies

Light curve features Gaussian processes

https://gp-multistate-kernel.readthedocs.io

Light curve features Variable star approach

We implemented dozens of light curve features based on ML papers on variable star classification

- Magnitude distribution features: amplitude, sample moments, Cusum (Kim et al. 2014), Stetson (1996) *K*, ...
- Light curve shape features: maximum slope, linear trend, linear least square fit, ...
- Periodogram based features: peak period, peak significance, shape based features

Anomaly detection in Zwicky Transient Facility DR1 Dataset

- Full catalog contains ~ 1.6.10⁹ of "objects" in g & r, collected in 284 days.
- Raw data are ~ 2 TB, our PostgreSQL database has ~ 5.10¹¹ rows and occupies ~ 4TB
- At least 100 observations per light curve, each covers at least 200 days.
 ~ 8.10⁷ of light curves in *r*.
- 38 features per light curve
- <u>http://ztf.snad.space</u> object viewer for expert analisys

Neighbours

Different passband, same field

1 March radius, arcaec March to both of both of

merent held

Metadata

neba 30 ngocebba 33 filler: 33 ceord, ething: 254-65/53, 35,34285 duration: 102,980 theado 065 read 55

10	south reduc	somth reduct, an sec					
Designation	Separatos, arcsen	Putod, days	Taxa of severing	Species type			
estim.	0.748	1.000	201910	BCIVIE-P Inc			

AAVSO VSX

GCVS

1	10875	win wo	ĸ					
equation	Securation, provid	2000	Fariod.	Versity No.	Vaceum mag	Band of mas mag	Malanya 1940	Eand of mit mig
1001	0.748	HOZ HOX	34.815	1,8982-9291-2	12,800	6	18,280	в

mjd – 58000

SNAD - SuperNova Anomaly Detection

Non formal group from **Sternberg astronomical** institute, Laboratoire de Physique de Clermont, Space **Research Institute and Central Aerohydrodynamic Institute** joined together to solve the problem of detecting unusual objects in supernova datasets with machine learning methods.

https://sne.space

OSC - Open Supernova Catalog (sne.space)

OSC composition (Guillochon et al. 2017)

Asiago Supernova Catalog

Gaia Photometric Science Alerts

Nearby Supernova Factory

Pan-STARRS

SDSS Supernova Survey

55 000 SNe and candidates600 000 photometrical datapoints20 000 spectra

Sternberg Astronomical Institute Supernova Light Curve Catalogue

Supernova Legacy Survey

MASTER Global Robotic Net

All-Sky Automated Survey for Supernovae

Palomar Transient Factory

OSC Statistics

OSC problems

- Unevenly distributed flux measurements
- Only a few passbands usually available per light curve
- For each LC we have different time span before the maximum
- Unreliable measurement accuracy estimations

Choosing data

- Filters gri or g'r'i' or BRI
- At least 3 data points in each filter
- All data converted to gri using known photometrical equations
- Fitting with Gaussian Processes in the range of [-20, +100] (arbitrary zero point)
- => 1999 objects

Dimesionality reduction

Nonlinear dimensionality reduction technique t-SNE (Maaten & Hinton 2008).

After the approximation procedure, each object has **374** features:

1213 normalized fluxes, the LC flux maximum, **9** fitted parameters

of the Gaussian process kernel, and the log-likelihood of the fit.

OUTPUT: 8 separate reduced data sets corresponding to 2 to 9 t-SNE

features (dimensions).

Results of Isolation forest algorithm

SN 91-T: SN 2013cv

- SN 91-T looks similar to Ia. The issue that it is brighter.
- Cenko, S. et al., ATel 8909 (2016)

SN 91-T: SN 2016bln

- Cao, Yi et al., AJ, Vol. 823, Issue 2, 147, 13 pp. (2016)

SLSN-II: SN1000+0216

Cooke, J et al. Nature, Volume 491, Issue 7423, pp. 228-231 (2012)

AGN: SN2006kg

was first classified as a possible Type II SN

further analysis of 3.6-m New Technology Telescope spectrum revealed that SN2006kg is an active galactic nucleus (Östman et al. 2011; Sako et al. 2018).

Binary microlensing event: Gaia16aye

In Wyrzykowski et al. (2016) it was reported that Gaia16aye is a binary microlensing event — gravitational microlensing of binary systems — the first ever discovered towards the Galactic Plane.

Active Anomaly Detection

- 1. Initialize isolation forest or other ensemble of anomaly detectors, set equal weight to each detector
- 2. Ask the ensemble for the outlier with the largest score
- 3. Ask an expert to classify the object as normal or anomaly
- 4. If anomaly, go to step 2 and ask next outlier
- If normal, reweight detectors to set lower weight to detectors that give higher score for the object, go to step 2

Active Anomaly Detection

Anomaly

Thank you for your attention